Teaching Product Engineering

A.E. Rodrigues
Emeritus Professor

Laboratory of Separation and Reaction Engineering (LSRE)
Associate Laboratory LSRE/LCM
Department of Chemical Engineering,
Faculty of Engineering, University of Porto (FEUP)
OUTLINE

Context - Why a Product Engineering course?

Objectives and audience
Methodology
Evaluation and Transferability

Conclusions
Chemical Engineering Evolution

0. Pre-paradigm – engineers with no formal education
 Descriptive treatment of specific processes (potash, sulfuric acid, soap)

1. The first paradigm – *Unit Operations*, 1923
 Processes broken into common, standard units such as heat exchange, distillation, crystallization, etc.

2. The second paradigm – *Transport Phenomena*, 1960
 Unified mathematical treatment of momentum, heat and mass transfer

3. The third paradigm – *Product Design? (Wei, Cussler)*
 Molecular Engineering
 Product design requires consideration of specific materials properties
Chemical Engineering today ChE=M2P2E
PRODUCT ENGINEERING COURSE

Introduced in MIEQ/FEUP in 2008 following a change in the curriculum

- three branches in the second cycle (Process and Product Engineering, Energy and Environment, Bioengineering)

I taught the course from 2007/2008 until retirement (forced) in 2013

I had the help of Viviana Silva (now at BASF, Germany) until 2011 and Miguel Teixeira (now at IFF, Holland) in 2011/2013
Why a course in Product Engineering?

Response to the changing nature of jobs for Chemical Engineers

Saraiva and Costa, ChERD, 2004 based on Cussler and Moggridge book
Product engineering course at MIEQ/FEUP

Product Engineering

Needs
Ideas
Selection
Manufacturing

TRIZ; CONSTRUCTAL
Product Classification

1. Commodities:
 propylene; Vanillin; Acetals

2. Specialty chemicals:
 Chiral molecules

3. Formulated products:
 Perfumes; Microcapsules

4. Devices:
 FlexSMB, NetMix

5. Virtual chemical products:
 SAXS, PTD

6. Bio-based products:
 Lactobionic acid; Dextran

7. Technology-based consumer goods:
 Perfumed suits
Devices: Simulated Moving Bed

Unit at LSRE: Licosep 12-26

FlexSMB at LSRE
1. Introduction to product design
2. Needs of consumer
3. Ideas;
4. Selection of ideas;
5. Manufacturing;
6. Commodities;
7. Devices;
8. Molecular products;
9. Microstructures;
10. TRIZ;
11. Economic aspects.
Two classes of 2 hour each in a weekly basis

14 weeks

56 hours contact time

189 h of work load

7 ECTS credits
I just gave a couple of lectures to introduce the course content and justify its existence.

Students (30-40) of 4th year of MIEQ were divided in groups of 4

In one class each group presented one chapter of reference books; the discussion was made by other groups and myself

In the other class of the week each group will present the progress of their projects

03072015
Evaluation & Transferability

Final exam 50%

Weekly presentations 20%

Report and Oral presentation of the project 30%

Limited to classes up to 50 students
Vanillin from kraft black liquor
Aletria com sabor a baunilha
Conclusions: The future of the lecture

Lecture format: Cussler classification

Traditional - John Calvin (1509-1564)

new version MOOCs (Massive Open Online Course)

Active – Socrates (469-399 BC)

asks leading questions; then students develop ideas…

Flipped – Nancy Lape teacher of Thermodynamics at Harvey Mudd College

taped lectures + classroom discussion
Things didn’t change much….

Figure 2. Henry of Germany delivering a lecture to university students in Bologna in 1233.

The behavior of students is very much the same today. Laurentius de Voltolina - The Yorck Project: 10,000 Meisterwerke der Malerei” DVD-ROM, 2002. ISBN 3936122202. Distributed by DIRECTMEDIA Publishing GmbH.

Figure 5. A schematic of exam scores vs. knowledge.

Helping students who reach the minimum, which often produces one form of “teachable moment,” can give them huge gains.
The innovation triangle

- Science
- Technology
- Process/Product

Sustainable Development